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Simulating 3-D Lung Dynamics Using a
Programmable Graphics Processing Unit

Anand P. Santhanam, Felix G. Hamza-Lup, and Jannick P. Rolland

Abstract—Medical simulations of lung dynamics promise to be
effective tools for teaching and training clinical and surgical proce-
dures related to lungs. Their effectiveness may be greatly enhanced
when visualized in an augmented reality (AR) environment. How-
ever, the computational requirements of AR environments limit the
availability of the central processing unit (CPU) for the lung dy-
namics simulation for different breathing conditions. In this paper,
we present a method for computing lung deformations in real time
by taking advantage of the programmable graphics processing unit
(GPU). This will save the CPU time for other AR-associated tasks
such as tracking, communication, and interaction management. An
approach for the simulations of the three-dimensional (3-D) lung
dynamics using Green’s formulation in the case of upright position
is taken into consideration. We extend this approach to other orien-
tations as well as the subsequent changes in breathing. Specifically,
the proposed extension presents a computational optimization and
its implementation in a GPU. Results show that the computational
requirements for simulating the deformation of a 3-D lung model
are significantly reduced for point-based rendering.

Index Terms—Augmented reality, Green’s function, lung physi-
ology, spherical harmonics.

I. INTRODUCTION

M EDICAL simulation of respiratory physiology allows
the development of tools for applications ranging from

teaching and training to surgical guidance. Of particular im-
portance is the simulation and visualization of physically based
lung dynamics related to lung morphology. A clinical evaluation
of a human subject’s regional lung morphology and behavior
during breathing aids in deciding the future clinical interven-
tion required for the patient [1]. In the case of lung disease,
the physician would better understand the patient’s response to
various clinical intervention possibilities. This paper focuses on
the simulation of physically based lung deformations presented
in an augmented reality (AR) stereoscopic visualization envi-
ronment. AR environments “augment” the users view of the
real world with virtual information [2]. These AR environments
have been used for applications from manufacturing and scien-
tific guidance to entertainment. Visualizing three-dimensional
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Fig. 1. View of lungs superimposed over a HPS in the Augmented Reality
Center [3].

(3-D) lung morphology in an AR environment involves graph-
ically superimposing the 3-D lung models on either the patient
himself or a human patient simulator (HPS) and visualizing
their dynamics in a physiologically based manner. Fig. 1 shows
a snapshot of a 3-D lung model superimposed over a HPS [3].
Such visualization may significantly improve the clinical teach-
ing and surgical guidance of respiratory medical simulation.
The key aims involved in achieving this visualization include:
1) tracking the real-world position of the patient or HPS; 2) com-
puting the subsequent global positions of the 3-D lung models;
3) registering the 3-D models onto the patient or HPS; and 4)
deforming and graphically rendering the 3-D lung models.

The technical challenges of designing and visualizing a medi-
cal simulation for lung morphology arise from its computational
complexity. Specifically, in an AR environment, the position and
orientation of the patient are updated by the tracking sensor ev-
ery 16 ms. Such update requires deforming and rendering 3-D
lung models at 30–66 times per second [3]. This subsequently
limits the usage of high-resolution 3-D lung models for real-
time deformation and visualization. A method to overcome this
limitation was proposed in [4], in which the 3-D lung dynam-
ics caused by the air-flow into the lungs were modeled using
Green’s formulation (GF). The lung deformation was precom-
puted for an upright orientation and simulated in real-time for
the upright position. However, the changes in the 3-D lung de-
formations for changes in the patient position and orientation in
an AR environment were not accounted for.

The method presented in this paper extends the 3-D lung
dynamics previously modeled in [4] by off-loading the run-
time deformation computations from the central processing unit
(CPU) to the graphics processing unit (GPU). Specifically, the
parameters of the deformation computation are transformed
into frequency-space coefficients using spherical harmonic (SH)
transformations before being off-loaded to the GPU. During
run-time, the deformation is computed in the GPU as a dot
product of the frequency-space coefficients. The end-result of
such an approach allows the CPU to cater to the computational
requirements of the AR environment, and the GPU to cater to
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the computational requirements of deforming and rendering the
3-D model in this AR environment. Additionally, a method to
approximate the airflow inside the lungs at any arbitrary orien-
tation is discussed.

The paper is organized as follows. Section II discusses the re-
lated work in 3-D lung morphology modeling and deformation
methods implemented using programmable graphics hardware.
Section III briefly discusses the framework developed for
3-D lung morphology simulation. Section IV discusses the
proposed method for simulating 3-D lung morphology and
the representation of the associated computations in the GPU.
Experimental results are presented in Section V. Section VI
concludes the paper.

II. RELATED WORK

Lung dynamics have been investigated for the verification of
thoracic medical imaging equipment and for medical training
purposes [5]. Initial methods to model the respiratory physi-
ology were designed as regional pressure–volume equilibrium
equations that are based on physiology and clinical measure-
ments. Mechanical and electrical analogues of these balanc-
ing equations were simulated for understanding the lung’s be-
havior [6]. These analogues substantially aided in providing
controlled mechanical ventilations [7]. In order to obtain a
computer-based simulation of the 3-D lung shape, deformation
methods were further analyzed.

Deformation methods compute the displacement of surface
positions of a 3-D virtual model. These methods have been
previously employed in applications ranging from surgery sim-
ulations to animations. The deformation methods can be either
geometrically based or physically based.

The geometrical methods model the lung deformation during
respiration by changing the positions of the 3-D mesh surface
points [8]. Of particular importance to medical simulations is
the usage of SH for modeling deformations. There has been a
significant amount of work performed using SH transformations
for shape approximations of face, vertebra, and tumor 3-D mod-
els. In the case of face modeling, the shape of a 3-D model before
and after the face deformation is represented using a set of SH
coefficients. The SH coefficients of the intermediate 3-D face
models are then represented as an interpolation [9], [10]. In the
case of the vertebra, the SH-based shape approximation before
and after the deformation is used to estimate the scaling and tor-
sion movements undergone during the deformation [11]. In the
case of tumor 3-D models, an SH-based shape approximation
is used for the diagnostic purposes [12]. It is also worth men-
tioning that the SH-based shape approximations have also been
applied for training artificial learning algorithms for 3-D model
recognitions [13] and predicting soft tissue deformations [14].
Such methods can accurately model the change in shape of the
lungs in real time but lack a physiological basis.

Physically based deformation methods attempt to model the
lungs based on the physiology of breathing. The physically
based deformation methods vary from simple functional rep-
resentations such as mass-spring models [15] to representa-
tions using polynomial basis functions, such as finite-element

methods (FEM) [16] and GF [17]. A FEM-based deformation
was proposed by DeCarlo in order to visualize 3-D lung dy-
namics [18] and was further improved by Kaye in order to
model pneumothorax related conditions [1]. In both these meth-
ods, a 3-D lung surface model was considered as a single-
compartment model [1]. An alternative method for modeling
lung deformations using a FEM-based functional representa-
tion of bronchioles and parenchyma was investigated by Tawhai
and Burrowes [19]. In this method, the air-flow inside the
bronchial airways was modeled using computational fluid dy-
namic methods. The volumetric lung space was divided into
multiple compartments. The bronchial airway and the surround-
ing parenchyma were modeled using FEM [19]. The number of
nodes or elements used for the 3-D virtual model limit the com-
putational complexity of the FEM.

GF represents the physics of nonvibrating deformation and
is computationally inexpensive as compared to the FEM. This
formulation has been extensively used in medical simulation
of anatomical organs and their haptic interactions [17]. Such
formulation provides scope for real-time deformation of high-
density 3-D models obtained from medical imaging methods
that will subsequently lead to the development of real-time medi-
cal simulation and visualization. The computational complexity
of GF is based on the number of elements in the 3-D model
used and the behavior of the elastic tissue. Two key mathemat-
ical components of this method are: 1) the applied force on
each node of the 3-D model and 2) the transfer function matrix,
which is a square matrix representing the tissue property. The
deformation is obtained as a matrix–vector multiplication of the
transfer function matrix and the applied force vector [20].

For real-time requirements, the computational complexity can
be reduced by either a decrease in the 3-D model complexity,
or an increase in the computational speed of the processor. A
decrease in the 3-D model complexity was discussed in [17]
using wavelet transformations. In this approach, the GF for a
given 3-D model at a high level-of-detail representation was
first computed [21]. For any given application, a suitable level
of detail was chosen and the 3-D model at that level of detail
was computed. The GF was then modified from its original level
of detail to the chosen level using wavelet transformations.

In order to increase the computational speed, we discuss the
usage of GPUs, which are high-speed data-stream pipeline pro-
cessors used for implementing fast graphics algorithms. Modern
GPUs perform floating-point calculations much faster than most
CPUs. For instance, a 3-GHz Pentium 4 can theoretically issue
approximately six billion FLOPS. A vertex program in NVIDIA
GeForce 5600 Ultra achieves approximately 20 billion FLOPS.
Similarly, the memory bandwidth of a CPU is approximately
6 Gb/s while that of a GPU is approximately 25 Gb/s [22].

Programmable GPUs have been previously used for imple-
menting both geometrically and physically based deformation
methods. The geometrically based methods of particular
importance were Key-framing and Vertex-skinning [23].
Key-framing allowed a cartoon artist to animate a 3-D character
(model) by interpolating among a set of intermediate 3-D frame
sequences. However, by implementing this method in a GPU the
intermediate 3-D frames had to be stored [23]. Vertex-skinning
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allowed a cartoon artist to create animations by associating the
movement of a node of a 3-D model to the movement of a set
of key nodes in the 3-D model. These key nodes as a group
were represented as a matrix (referred to as a bone matrix). The
animation was reduced to a matrix–vector multiplication in a
GPU [24]. Physically based methods were implemented in a
GPU using the “render-to-texture” feature. This feature allowed
intermediate values of a computation to be stored into a texture
memory in GPU, referred to as P-buffer [25]. This approach was
used in obtaining physically based wave motions for fluid and
cloud simulations [26] and FEM computations [27] in a GPU.

III. OVERVIEW OF THE METHOD FOR 3-D LUNG DEFORMATION

In this section, we outline the methodology adopted for the
dynamic simulation of 3-D lungs deformation. This method is
subdivided into three stages. The first two stages have been ad-
dressed in [4], [28], and [29]. In the first stage, we parameterized
the change in lung volume for a change in pressure (referred to
as transpulmonary pressure) [28], [29]. This change in pressure,
which causes the air-flow inside the lungs, accounts for both
the local muscle resistance caused by anatomical components,
such as lung tissue, diaphragm, and rib cages, as well as the mo-
tor drive of breathing controlled by a network of neurons in the
medulla. This relation between the lung volume and the transpul-
monary pressure is referred to as a pressure–volume (PV) rela-
tion. Both normal and abnormal PV relations may be simulated.

In the second stage, we estimated the change in the global
lung shape for an increase in lung volume [4]. This was ob-
tained using a physically based deformation method. Within the
context of computer animation, a GF-based deformation was
chosen since it has been observed that lung deformations do not
undergo vibrations [30]. The total number of nodes on each of
the 3-D high-resolution lung models is approximately 400 000.
Such a large number of nodes facilitates effective modeling
of both normal and pathophysical lung deformations. Also, a
Young’s modulus was first associated to every node of the 3-D
lung model based on the lung’s regional alveolar expansion. A
unit force was then applied on each node and the transfer func-
tion matrix was computed using an iterative approach. In each
step of the iteration, the force applied on a node was shared with
its neighboring nodes based on a local average of Young’s mod-
ulus as described in [4]. The iteration stopped when this sharing
of applied force reached an equilibrium. At this point of equilib-
rium, the force shared by a node with its neighbors formed a row
of the transfer function matrix. An upright orientation was con-
sidered in order to deform the 3-D lung model. The applied force
caused by the air-flow inside the lungs was given by the vertical
pressure gradient of lungs [31]–[33]. The computed force was
then normalized so that the sum of the applied force magnitude
on all the nodes was equal to a unit increase in volume. A unit in-
crease in volume was set as the ratio between the tidal volume of
human lungs (i.e., 500 mL) and the product of the deformation
steps per second (i.e., 66.66 steps/s) multiplied by the ventila-
tion rate of inhalation or exhalation (normally 3 s/breathing).
Thus, for each increase in lung volume the subsequent change
in lung shape was computed [4].

Fig. 2. Graphic representation. (a) 3-D polygonal lung model. (b) Polar coor-
dinate representation.

The third stage of the proposed methodology forms the focus
of this paper. We consider a per-vertex approach for deform-
ing and rendering 3-D lung models. We present a method to
optimally compute the matrix–vector multiplication in a GPU
during run-time. Specifically, the matrix–vector multiplication
is represented in steps, which can be partially precomputed
offline. The columns of the transfer function matrix are precom-
puted and represented using SH coefficients. These coefficients
are obtained from orthonormal decomposition of the transfer
function matrix using SH transformations [34]. The SH trans-
formations approximate the transfer matrix with a negative-
exponential convergence instead of a uniform convergence,
which can be seen in wavelet transformations [35]. This property
of SH transformations allows us to represent the transfer ma-
trix using a minimal number of SH coefficients. While the 3-D
models are rendered using a point-based rendering approach, a
comparison of the frame rate per second (FPS) in using point-
based rendering and polygon-based rendering is discussed in
Section V. Additionally, the number of SH coefficients used
for representing the transfer function row is much less as
compared to the number of coefficients used for shape ap-
proximation (discussed in Section II). This advantage of the
proposed method coupled with the per-vertex nature of an SH
coefficient allow us to use GPU for improving the computation
speed.

In the proposed approach, we make use of a unique prop-
erty of normal lung deformations. In our approach, the transfer
function remains a constant until the tissue properties undergo
irreversible damage [36]. Since lungs do not undergo irreversible
damage under normal breathing conditions, the transfer matrix
can be considered a constant. The transfer function matrix is pre-
computed using the method proposed in [4]. The SH coefficients
are transferred into the local memory of the GPU along with the
3-D model before starting the simulation. The SH coefficients of
the force applied on the 3-D model are also precomputed. Dur-
ing the simulation, 3-D deformation is computed in GPU as a
dot product of precomputed SH coefficients of the applied force
and the transfer function matrix. The method is computationally
inexpensive when compared to the dot product of the transfer
function matrix and the applied force for a high-resolution 3-D
model. The usage of this representation in deforming the 3-D
lung model is further detailed in Section IV.
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IV. MATHEMATICAL MODEL

In this section, we discuss the steps in the third stage of the
methodology adopted for simulating 3-D lung dynamics. The
nodes of the 3-D lung model [as shown in Fig. 2(a)] are rep-
resented using polar coordinates [as shown in Fig. 2(b)]. Such
polar coordinates were obtained by projecting the nodes of the
3-D lung model [Fig. 2(a)] onto a spherical hull of large ra-
dius. It was observed that such an approach provided unique
spherical coordinates for all the nodes of the 3-D lung model.
Any shape degenerations in the 3-D lung model representing
patho-physical conditions can be accounted for using conformal
mapping methods [37] and is discussed in the future work. Let
θI , ϑI represent the polar coordinate of node I of the 3-D lung
model. At any instant during deformation, a force is applied
on each node. From the force we can determine the function
F (θJ , ϑJ ) that best approximates the force [38]. Similarly, we
can also determine the function T (θI , ϑI , θJ , ϑJ ) that best ap-
proximates the transfer function matrix of the 3-D lung model,
which represents the elastic interaction between node I and J
associated with the deformation. The fundamental form of the
transfer matrix is given in [20] and [34]. Let D(θI , ϑI ) be the
displacement of the node I . For simplicity in notation, we denote
D(θI , ϑI ) by D(I), F (θJ , ϑJ ) by F (J), and T (θI , ϑI , θJ , ϑJ )
by T (I, J) · D(I) using GF can be written as

D(I) =
N∑

J=0

F (J)T (I, J) (1)

where N is the total number of nodes in the 3-D lung model. To
further reduce the complexity of the computation, we approx-
imate this function using a set of SH basis functions. The dis-
placement and the transfer matrix have been previously shown
to be elements of a Hilbert space, which can thus be represented
again using SH polynomials [39]. We use this theoretical fact
to modify the computations involved in the dot product on the
right hand side of (1). A finite set of SH coefficients are used
for representing an array of numbers. Let Ylm (θJ , ϑJ ) represent
the SH polynomials and Y ∗

lm (θJ , ϑJ ) be their conjugates poly-
nomial at node J [40]. For simplicity in notation, we denote
Ylm (θJ , ϑJ ) by Ylm (J) and Y ∗

lm (θJ , ϑJ ) sin(θj ) by Y ∗
lm (J).

The applied force can be represented as

F (J) =
n∑

l=0

l∑
m=−l

Flm Ylm (J) (2)

where n specifies the total number of SH bands and is the
square root of the total number of SH coefficients. The values
of Flm are the SH coefficients of the force where l and m are
indexes for the SH coefficients and the SH polynomials. The
SH coefficients can be computed from the applied force by the
following relation:

Flm =
N∑

J=0

F (J)Y ∗
lm (J). (3)

The Ith row of the transfer function can now be given as

T (J, I) =
n∑

l=0

l∑
m=−l

T I
im Ylm (J) (4)

where T I
lm represents the SH coefficients of the Ith row of the

transfer matrix. We now write (1) by substituting the expansions
of the applied force and the transfer function row given in (2)
and (4), respectively. Thus, (1) can be written as

D(I) =
N∑

J=0

[
n∑

l=0

l∑
m=−l

Flm · Ylm (J)

]

.

[
n∑

l ′=0

l ′∑
m ′=−l ′

T I
l ′m ′Yl ′m ′(J)

]
. (5)

In the orthonormal property of SH functions, the summation
(for values of J from 0 to N ) of the product of Ylm and Yl ′m ′

is 1 when l equals l′ and m equals m′ and 0 otherwise [39].
Equation given in (6) may now be expressed as

D(I) =
n∑

l=0

l∑
m=−l

Flm T I
im A (6)

where A is a constant (of value 1) representing the summation
of the square of Ylm (whose value is 1 because of its orthonor-
mal property) for all values of J [39]. We now introduce the
following modification to (6):

D(I) = α

n∑
l=0

l∑
m=−l

(Flm T I
im A) (7)

where α is a coefficient, which allows accounting for the finite
value of n. Further discussion on the choice of n and the corre-
sponding value of α are discussed in Section V. The SH coeffi-
cients of both the applied force and the transfer function matrix
can be precomputed and thus, we need to compute only (7) dur-
ing run-time in order to obtain deformation of the 3-D model.

Having discussed the method to optimize the dot product, we
now propose to compute SH coefficients of the applied force
for different patient’s orientation in run-time by interpolating
among a set of specified orientations. The origin of the coor-
dinate system is set to be the centroid of the lung model. The
orientation of the lung model is now represented in terms of the
rotation angles along the X,Y , and Z axes. Let pi, qi , and ri

be the arrays of precomputed SH coefficients for the applied
force at rotation angle i of π/2, π, 3π/2, and 2 π along the
X,Y , and Z axes, respectively. Let a, b, and c be arbitrary
values for current rotation angles for the 3-D lung model. For
such orientation, the SH coefficients for the applied force are
computed by smoothly interpolating among pi, qi , and ri . Let
a0, a1, b0, b1, c0, and c1 be the angles of i that form the closest
lower and upper limits for a, b, and c, respectively. The SH co-
efficients of the applied force for the orientation a, b, and c are
now given by

fabc
lm = fa

lm + fb
lm + fc

lm (8)

where

fa
lm =

[pa0
lm cos(a − a0) + pa1

lm cos(a − a1)]
3

fb
lm =

[
qb0
lm cos(b − b0) + qb1

lm cos(b − b1)
]

3
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and

fc
lm =

[rc0
lm cos(c − c0) + rc1

lm cos(c − c1)]
3

. (9)

The advantage of using SH coefficients is that it reduces
the dot product of two arrays of variable length of nonzero
values to a dot product of two arrays of fixed length of nonzero
values. Since the SH coefficients of the transfer function matrix
and the applied force are precomputed, a significant amount
of computation time is saved. Additionally, the SH coefficients
can be directly modified for any change in the 3-D model’s
level of detail, which allows the method to comply with various
application requirements.

We now summarize the third stage in three steps.
Step 1) In the first step, the position, color, and normal of a

node in the 3-D lung model and the transfer function
matrix are transferred into the GPU’s vertex array.
Since the GPU is a per-vertex processor, every row
of the transfer matrix is associated with a node of the
3-D model and is transferred into the vertex array as
multitexture coordinates.

Step 2) The second step involves computing the SH coeffi-
cients of the applied force array using (8) and (9)
for the current orientation of lungs. The AR steps in
tracking the orientation of the patient or HPS is be-
yond the scope of this paper and, thus, the orientation
angles are obtained from AR components.

Step 3) The third step of the third phase is the implementation
of (7) in the GPU during every frame. We use a
GeForce4 FX 5600 for rendering and deforming the
3-D lung model. Specifically, we use a CG 1.1-based
programmable vertex-shader, for the shading of the
3-D model (cg simple [23]) and implementing the
dot product of the per-vertex transfer matrix’s row
and the applied force in the vertex shader.

We now investigate the mathematical computation require-
ments of (1). For high-resolution 3-D lung models, it was ob-
served that each row of the transfer function matrix has an
average of 192 nonzero values. Thus, the computation of de-
formation of a node, using (1), will undergo an average of 192
multiplications and 191 additions. We now continue by analyz-
ing the computational requirements of (7). We first compute the
SH coefficients of the transfer function, which can be performed
offline since the transfer function for lungs is considered a con-
stant. The SH coefficients of the applied force at predetermined
orientations can be computed from (3) offline. For any orien-
tation of the 3-D lung model, the applied force is interpolated
using (8) and (9). The deformation computation of (7) would be
four vector (array of four floating-point numbers) dot products
and three additions per node in the Nvidia’s GPU, which reduces
the number of computations by approximately one-third.

V. LUNG DEFORMATION RESULTS

In this section, we first quantify the increase in speed obtained
by using GPU-based deformations. Specifically, we show that
when GPU-based deformations are used, an increase in the 3-D
model’s complexity, and the AR system’s computational com-

TABLE I
SYSTEM BENCHMARK USING LEARNING VAR

plexity of the tracking and the registration components do not
create a significant lag in simulation. We then discuss the graphic
outputs obtained from the deformation approach.

The frame-rates per second (FPS) for the implementation
system were computed using Nvidia’s benchmark program,
learning VAR [23] and are reported in Table I. It can be seen
that the system provides a higher frame rate with the GPU-based
simulation (vertex array memory used in association with the
vertex program [23]) compared to the CPU-based simulation.

The FPS observed during the 3-D lung deformations are
also traced using the learning VAR program and are as de-
tailed in Table II. In this paper, we have used a Nvidia’s shader,
cg simple [23] to simulate lighting conditions. For simulation
purposes, both generic point-based and polygon-based render-
ing approaches were considered. While the polygon-based ren-
dering approach has been extensively discussed in the graphics
field, the point-based rendering approach is currently being ad-
dressed for high-resolution rendering and tailored for VR/AR
applications. Also, for a point-based rendering approach, the
vertex size was set to be five for occlusion purposes. The rela-
tion between the vertex size and the FPS is later discussed in
this section. It can be seen that the FPS observed for point-based
rendering is much higher as compared to the polygon-based ren-
dering, which stems from the low computational complexity of
point-based rendering for data traversal, occlusion culling, and
lighting steps. In the case of a point-based rendering approach, it
can be seen that the FPS for a GPU-based implementation of (7)
is approximately 1.4 and 10 times the FPS of CPU-based imple-
mentation of (7) and CPU-based implementation of (1), respec-
tively. In the case of a polygon-based rendering approach, GPU-
based implementation of (7) is approximately 1.2 and 5 times
the FPS of CPU-based implementation of (7) and CPU-based
implementation of (1), respectively. Variations in the number
of light sources (a rendering parameter) caused a reduction of
approximately two FPS for each of the methods. Thus, a GPU-
based implementation of (7) can be used in conjunction with
both point-based and polygon-based rendering approaches.

From the FPS numbers discussed in Table II, it can be seen
that for a GPU-based deformation approach, the FPS is almost
halved when rendering is changed from mono to stereo. This
reduction in FPS numbers is caused by the fact that in the GPU-
based deformation approach, the 3-D lung model gets deformed
for each eye (for a stereoscopic visualization). For a CPU-based
deformation, the 3-D lung model is deformed only once and
rendered twice. Thus, the FPS numbers in this case are not
halved when rendering is changed from mono to stereo.

The GPU-based deformation approach provides less im-
provement over the CPU-based deformation approach when
polygon-based rendering is used, which stems from the high
data-structure traversal involved in a polygon rendering. Specif-
ically, in a polygon-based rendering, each node is accessed
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TABLE II
FRAME RATES OBTAINED FOR 3-D LUNG DEFORMATIONS

Fig. 3. (a) Delay caused by the usage of CPU-based lung deformation using (1) (green) and (7) (yellow) and the subsequent optimization seen in a GPU-based
lung deformation (red). (b) Demonstration of the increase in simulation lag with the usage of the CPU-based deformations of (1) (red) as opposed to (7) (blue).
A point-based rendering approach is considered for the above results.

approximately four times from the memory. A GPU-based
per-vertex deformation approach would thus compute the de-
formation at each of the four times, which overshadows
the benefit of using the GPU. Thus, a point-based render-
ing approach would be more suitable for high-resolution
lung models in order to satisfy the requirements of the AR
environment.

For the rest of the paper, we use a point-based rendering
approach. Fig. 3(a) presents a comparison of the lung ventilation
(volume change with time) visualized using a CPU-based im-
plementation of (7) (2800 + AMD Athlon) with the ventilation
visualized using a GPU-based implementation of (7) (Nvidia
GeForce4 FX5600). For simulation purpose, a point-based
rendering approach is considered to minimize the delays caused
by the rendering process. It can be seen that there exists a
difference (referred as lag) between the lung ventilation with
a GPU-based deformation [the black square line in Fig. 3(a)]
and the lung ventilation with a CPU-based deformation using
(7) [the light triangle line in Fig. 3(a)]. The time lag can be
explained from the offloading of the deformation computations
from the CPU to the GPU. Since we deform the 3-D lung model
at every frame, the time lag is directly related to the FPS. The
CPU-based implementation of (7) has a time lag of approxi-
mately 1.4 s/breathing cycle. The CPU-based implementation
of (1) [the gray cross line in Fig. 3(a)] has a time lag of approxi-
mately 13 s/breathing cycle. This lag in CPU-based deformation
increases linearly with simulation time as shown in Fig. 3(b)
for both the CPU-based implementation of (1) (the light gray
line) and (7) (the dark gray line). These graphs support the
computational speed-up results obtained from using the GPU.

Fig. 4. The increase in the slope of the time delay with an increase in the
3-D model complexity (1×, 2×, and 4×). A point-based rendering approach is
considered for the above result.

The decrease in the FPS with an increase in the 3-D model
complexity is shown in Fig. 4. We use a notation of “ c×” to refer
to the increase in the 3-D model complexity by a constant c. With
the increase in the 3-D model complexity (0.25×, 5×, 1×, and
2×) the CPU-based implementation of (7) had a decrease in
the FPS since the number of SH coefficients does not increase
with an increase in the total number of nodes. There also exists
a significant decrease in the FPS in the case of a GPU-based
implementation of (7), which is caused by an increase in the
number of data elements transferred from the vertex array for
each rendering. Thus, for higher model complexity, improved
GPU with higher vertex array bandwidth would be required.
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Fig. 5. Comparison of the displacement of 3-D lung nodes computed using
(1) (dark gray) and (7) (light gray). The RMS difference in the displacement
was computed to be less than 1 mm.

Fig. 6. Comparison of the FPS obtained for lung deformations using GPU-
based implementation of (7) and CPU-based implementation of (7) for an in-
crease in the number of SH coefficients used. A point-based rendering approach
is considered for the above result.

The accuracy in using SH transformation is shown in Fig. 5.
It was observed that the displacement of the nodes could be
reconstructed using 16 SH coefficients with an accuracy of less
than 1% RMS error, which translates to less than 1-mm RMS
error. An initial validation of the deformation obtained using
CPU-based computation was discussed in [41]. The difference in
this change in shape and volume was negligible when the GPU-
based computation was compared to the change in shape and
volume obtained using the validated CPU-based computation.

The scalability of the GPU-based computation approach was
compared with the CPU-based computation and is shown in
Fig. 6. It can be seen that for an increase in the number of
SH coefficients, the FPS of the CPU-based computation ap-
proach decreased more than the GPU-based computation ap-
proach. Such scalability will be of importance for future work
in modeling patho-physiological changes in breathing caused
by disease states.

The variations in the vertex size and its effect on the GPU-
based and the CPU-based computation are shown in Fig. 7. It

Fig. 7. Comparison of the FPS obtained for lung deformations using GPU-
based implementation of (7) and CPU-based implementation of (7) for an in-
crease in the vertex size. A point-based rendering approach is considered for
the above result.

Fig. 8. 3-D Lung shape (front view) in an upright position. (a) At the start of
inhalation. (b) At the end of inhalation.

can be seen that for an increase in the vertex size, the FPS of
the CPU-based computation approach decreased more than that
of the GPU-based computation approach. The reduction in the
FPS values for both approaches is caused by the increase in the
occlusion culling computations.

A snapshot of the visualization of high-resolution 3-D lungs
in the upright position at the start of an inhalation phase is
shown in Fig. 8(a). The change in shape and volume at the
end of the inhalation phase using a GPU-based computation is
shown in Fig. 8(b). On a detailed observation one would notice
the “bucket-handle” rotation of rib-cage markings in the lung.
It refers to the rotation of the rib cage along the spinal-cord
axis during inhalation and exhalation. A sequence of 3-D lungs
at different transpulmonary pressure in a perspective view is
shown in Fig. 9(a)–(d). The bounding box of the 3-D lungs at
the start of inhalation is shown in each of the images.

The side-views of the lung dynamics in the upright and supine
positions are shown in Fig. 10(a) and (b), respectively. Such vi-
sualization snapshots are taken during the inhalation phase with
the deformed 3-D lung model (light gray lung model) overlap-
ping the undeformed 3-D lung model (dark gray lung model).
The lower the regional overlap, the higher is the visibility of
the gray undeformed lung model. Such variations in the over-
lap visually represent the change in lung shape caused by the
lung deformation. The subtle difference in the deformation of
the base of the lungs in the upright and supine positions can be
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Fig. 9. 3-D lung shapes (perspective view) in an upright position are shown at transpulmonary pressure at (a) 5%, (b) 40%, (c) 75%, and (d) 100%.

Fig. 10. Visualization of 3-D deformed lung shape (red) overlapped with the
undeformed lung (gray) at the end of inhalation. (a) In an upright position. (b) In
a supine position.

Fig. 11. Real-time 3-D lung dynamics. (a) When visualized through the HMD
in an AR setup. (b) When superimposed over a HPS and visualized through the
HMD.

seen. Specifically, the front side of the base region in the supine
position displaces more when compared to the backside of the
base region in the supine position, which is not observed in the
upright position.

The usage of 16 SH coefficients used in the GPU-based im-
plementation yields α to be 1.03 for lung deformations. α for
values more than 16, the value of α tends to 1. These sequences
of images represent the shape change that will be viewed in AR.

Finally, Fig. 11(a) represents a snapshot of the lung dynamics
being visualized in an AR setup. The 3-D lung model is in
an upright orientation and is projected onto the ARC screen.
Such 3-D visualization can constitute a training platform for
medics where a group of students or experts may visualize
the 3-D deforming lung model as if the layers of the body had
been peeled off to reveal the lungs and its important anatomical

structures. Furthermore, a same view of the lung could also be
given to each participant to train on a specific procedure such
as needle insertion in the case of a pneumothorax. Fig. 11(b)
represents the lung dynamics when the 3-D models are now
superimposed over the HPS and visualized through a head
mounted display (HMD). To take this camera view, the 3-D
models were hand-positioned over the HMD and their dynamic
registration was left to future work.

VI. DISCUSSION

In this paper, we have discussed a method to compute 3-D
lung deformations in a GPU for an AR environment that ac-
counts for changes in the deformations associated with changes
in the orientation of the patient or HPS. The physics and
physiology-based deformation operator for lung deformations
allows us to model lung deformations with variations in physics-
based parameters. The GPU-based deformation approach for
lung dynamics discussed in this paper closely models the change
in 3-D lung shape in real time. Such an approach coupled with
the PV relation (discussed in Section III-A) allows us to vi-
sualize normal 3-D lung deformations. Such visualization may
play a significant role in assessing clinical interventions for a
patient. The usage of high-resolution models in the visualization
supports meticulous modeling of tissue degenerations.

In our approach, we have represented each lung as a single
compartment. The choice of such a single compartmental model
enables real-time visualization of high-resolution 3-D lung de-
formations. The accuracy in the usage of a single compartmental
model has been validated by some of the peers. The validation
however needs to be extended across a wide range of human
subjects varying in age and race. Additionally, the applicabil-
ity of a single compartmental model to simulate diseased lung
dynamics needs to be further validated. In the case of a multi-
compartmental representation of each lung, the collision of each
compartment also needs to be taken into account, which adds to
the computational complexity.

The creation of such a deformation operator for lung dynam-
ics was discussed in [41]. The usage of the regional alveolar
expandability as one of the parameters allowed the deformation
operator to account for the physiology of normal human sub-
jects. The method can be extended by analyzing the regional
alveolar expandability for human subjects across a wide range
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of age, race, and disease states. With respect to real-time 3-D
lung dynamics, such variations can lead to an increase in the
number of SH coefficients used for representing the deforma-
tion operator. The proposed method can be expanded in order
to address this computational aspect.

The validation of the lung deformation was discussed in [41].
Through this validation, we illustrated the method to obtain
physically and physiologically based lung deformations. Specif-
ically, an estimate of the deformation kernel was made, which
allowed us to compute the accurate displacement of each sur-
face node using (1). In Section V, we showed the accuracy of
the GPU-based deformation using (7) to represent the 3-D de-
formed lung shape using (1). Additional validations will be done
using HRCT data obtained from a higher number of normal and
diseased human subjects under different breathing conditions
and orientations.

We have discussed the advantages of the proposed method in
terms of the time lag and the FPS obtained using the proposed
method in a GPU. Although the CPU–based deformation
approach can be improved by using a heuristic frame-rate
control method, the effectiveness of such a heuristic method
needs to be carefully quantified under rapid breathing changes
in the subject’s physical conditions and orientation. We are
currently investigating these methods and will discuss its result
in future work.

Finally, variations in rendering steps (occlusion culling,
lighting, texture mapping, etc.) may also reduce the frame
rates of the visualization system. In this paper, we have
used a Nvidia’s shader, cg simple [23] to simulate lighting
conditions. Further investigation will be required in order to
verify the FPS obtained using a combination of GPU-based
deformation approach and state-of-the-art rendering algorithms
for each rendering step that pertains to both point-based and
polygon-based rendering approach.
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