
Comparative Study of APIs and Frameworks for Haptic Application Development

Dorin M. Popovici, Felix G. Hamza-Lup, Adrian Seitan, Crenguta M. Bogdan
Mathematics and Computer Science Department

Ovidius University
Constanta, Romania

{dmpopovici, cbogdan}@univ-ovidius.ro, felix.hamza-lup@armstrong.edu, seitan.adi@gmail.com

Abstract—The simulation of tactile sensation using haptic
devices is increasingly investigated in conjunction with
simulation and training. In this paper we explore the most
popular haptic frameworks and APIs. We provide a
comprehensive review and comparison of their features and
capabilities, from the perspective of the need to develop a
haptic simulator for medical training purposes. In order to
compare the studied frameworks and APIs, we identified and
applied a set of 11 criteria and we obtained a classification of
platforms, from the perspective of our project. According to
this classification, we used the best platform to develop a visuo-
haptic prototype for liver diagnostics.

Keywords- virtual and augmented reality; visuo-haptic
application; haptic API; haptic framework; house of quality

I. INTRODUCTION
Virtual and augmented reality technologies are essential

for current and future working environments with
applications in a wide range of human activities, such as:
medicine, engineering, education, tourism and more. In the
last decade, the technology has evolved in such a way that it
can offer advanced multi-modal simulations by combining
visual with tactile feedback, and by doing so, it is
augmenting the user's sense of presence inside the virtual
environments on multiple channels (i.e. tactile, vision,
auditory). The development of such systems represents a
priority for international research programs due to their
capability to improve the efficiency of different human
activities (e.g. training activities of medical personnel,
realistic simulations for testing residents in medical
procedures, etc).

If we describe any human activity domain without
referencing the 3rd millennium technology, we risk offering
an incomplete image of the subject. Particularly in
educational and training environments which are strongly
influenced by the evolution of technology.

Sensorial renderings that are presented to a user of such
an environment are multimodal, spanning from the audio
sense to visual and recently to the tactile sense.

II. THE HAPTICMED PROJECT
The main goal of the Haptic Interfaces in Medical

Applications (HapticMed) project is to strengthen our team’s
competency in the domain of haptic interfaces. This goal will
be achieved by transferring the scientific and technical
expertise from the second author, expert in the design and

development of user interfaces with haptic-feedback (i.e.
tactile retroaction) and their usage in medical training and
patient rehabilitation, to the Ovidius University team.
Specifically, the project is oriented towards simulation
applications in the medical field, especially in laparoscopic
surgeon training [1].

The paper is structured as follows. Section 3 presents the
conceptual architecture of a haptic platform, followed by a
brief description of existing haptic frameworks and APIs for
Haptic User Interface (HUI) development, in Section 4. In
Section 5 we apply a set of 11 criteria in order to obtain a
classification of these frameworks and APIs, from the
perspective of our project. We conclude with discussions.

III. HAPTIC PLATFORMS ARCHITECTURE
Each of the studied platform implements an architecture

similar to the one presented in Fig. 1. It is easy to observe
the central role that haptic and visual devices play in the
multi-sensorial application development. Moreover, there is
a need of other devices as well, that assures audio rendering
for example, and may respond to other specific application
needs. Each API is responsible for the implementation of the
interfaces with those devices and for their synchronization
with the visual component.

Each of the studied frameworks uses a different meta-
language, such as XML, VRML or X3D [2] in order to
describe the scene graph structure. Frequently, Python is
used for enriching the scene graph structure specified by a
meta-language, adding functionality by scripting modules.

Figure 1. Conceptual architecture of a multisensorial haptic platform

IV. HAPTIC FRAMEWORKS AND APIS
Without being exhaustive in what it concerns haptic

devices, our contribution attempts to be comprehensive in
what it concerns existing haptic APIs.

ReachIn [3] is a programming interface, written in C++
and based on the scene graph implemented by VRML. The
API was one of the first commercial ones that involve
haptics. Its platform structure allows the development of
multimodal interfaces and synchronizes haptic, graphic,
audio or non-haptic devices.

SOFA (Simulation Open-Framework Architecture) [4] is
an open-source simulation framework dedicated to the
development of algorithms for deformation. Using a scene
graph structure, SOFA provides several views in modeling
3D objects: a dynamic view that include masses and
constitutive laws for the objects, a collision view that use
simplified 3D models of the objects in collision computation,
and a visual view that uses a complex 3D graphical
representation. SOFA assures the scene consistency between
these models by using mapping modules. Moreover, SOFA
implements complex real-time algorithms that use multiple
representations of the simulated objects in the three views.

Computer Haptics and Active Interfaces - CHAI3D [5] is
an open-source designed to facilitate the development of 3D
modeling applications augmented with haptic rendering. It
supports several commercial haptic interfaces such as
Servo2Go and Sensoray 626 I/O board, IEEE1394 interface.
CHAI3D provides an easy solution to interface any haptic
device with a specific computer-based application. CHAI3D
framework allows extensions using modules for ODE [6]
and dynamic engines that simulate rigid and deformable
objects in real-time. Moreover CHAI3D enables the
development of new classes, in order to integrate new haptic
and visual rendering algorithms as well as drivers for new
devices.

A popular open-source platform, H3D [7] is dedicated to
haptic modeling that combines the OpenGL and X3D
standards together with haptic rendering in a single scene
graph that mixes haptic and graphic components. H3D is
independent of haptic device multi-platform that allows
audio and 3D stereoscopic device integration. H3D is
conceived to support rapid prototyping. Combining X3D,
C++ and the Python scripting language, H3D improves the
speed of execution, when performance is critical, as well as
high speed of development, when rapid prototyping is
required..

General Physical Simulation Interface (GiPSi) [8] is an
open-source framework that presents a flexible architecture,
developed to simulate surgical procedures at organ level. The
architecture interconnects computational and data models,
developed by different research teams, quantitative
validation of biological simulations together with software
modules interconnections.

OpenHaptics toolkit [9] developed by SenseAble,
includes the QuickHaptics interface, the haptic device (HD)
interface (HDAPI), the haptic library (HL) interface
(HLAPI), together with tools and drivers for PHANTOM®

devices (PDD). The toolkit is accompanied by a solid
documentation and a programmer’s guide.

The HDAPI provides low level access to the haptic
devices. The programmer can replay forces on the device
and has access to the device driver configuration settings and
debugging support. The HLAPI covers haptic feedback at a
higher level and requires OpenGL development knowledge.
QuickHaptics allows haptic application development or
extensions for existing applications.

Through HLAPI and HDAPI interfaces, OpenHaptics
gives the possibility of both high-level and low-level haptic
programming, by means of an adaptable control module.

In the following section, we provide a comparison among
these APIs based on a set of criteria as input in a house of
quality analysis [10].

V. COMPARATIVE STUDY OF HAPTIC PLATFORMS
In the following, we will compare the presented haptic

APIs in order to qualitatively evaluate them from the
perspective of the HapticMed project. To this end, we adopt
the House of Quality metodology [10] on the basis of 11
criteria in accordance with the mentioned project
requirements. The selected criteria are:
- license type
- required resources
- multimodal resources
- compatibility with haptic devices
- 3D navigation metaphors and devices
- implementation language
- extensibility and adaptability
- real/virtual time execution
- dynamic configuration of the scene
- documentation
- availability of the API

All these criteria are evaluated for each of the studied
framework using a four-scale graded value. The score is to
be interpreted as follows:
- 0 means that the framework has low quality capabilities

or non-existent capabilities for the assessed subdomain;
- 1 means that the framework meets the analyzed

capability, and it is weakly fulfilled;
- 3 means that the framework meets the analyzed

capability, and it is fulfilled at a medium rate;
- 9 means that the framework meets the analyzed

capability, and it is strongly fulfilled.
This rating system was used in order to fill in the

correspondent tables to each criterion. The scores were given
by the programmers that have developed applications using
each of the labeled frameworks.

A. License type
The first criterion refers to the influence that the type of

the license has over the developing process. The advantages
of a paid license consist of the support that the framework
developers can offer, but on the other hand, this kind of
license adds costs that may not be eligible to the project,
especially at the prototype level.

SOFA is an open-source framework written in the C++
programming language. It is a simulation framework which
offers tools for implementing algorithms and also for
splitting complex objects into functional components.

CHAI3D offers two types of licenses: an open license
and a professional license (Professional Edition License).
Open-source license is a GNU General Public License
(“GPL”) version 2 type. This license offers the users free
access to the source-code and allows the distribution, use and
change of the source-code while observing the stipulated
terms in GNU GPL. If one uses CHAI3D code inside an
application that is not under a GNU GPL type license, in
order to sell the product the professional license must be
purchased.

Another framework that is available under two types of
licenses is OpenHaptics; it has an academic license and a
commercial one. The academic license is used for
educational or research purposes as long as the developed
applications are not commercialized.

H3D is also an open-source framework available under
the GNU GPL license; it allows modification and
distribution of the code as long as the process is under the
license terms.

Also, there are applications labeled as open-source, but
they require one or more applications that work only under
paid license; these are semi-open source. For example, GiPSi
is an open-source framework dedicated to surgical
simulations at organ level. It supports developing reusable
models, adaptation of heterogeneous computing models and
it offers a working area to use multiple heterogeneous
models. GiPSi is independent of the models it uses and,
therefore, it offers easy integration of haptic models and of
the underlying processes for haptic simulations.

A commercial license framework is ReachIn. It can be
used only by contacting the developing team. Official
website [3] contains the characteristics of the ReachIn
products and contact information.

The license oriented evaluation of the haptic frameworks
is illustrated in the Table I.

B. Ressources needed
The conditions to use a visuo-haptic framework depend

on certain minimum hardware requirements, and rely on
some software packages.

1) Hardware resources
The hardware requirements refer to the connection

between the haptic device and the computer. This could be a
FireWire (IEEE 1394) on 6 or 4 pins connection, USB, PCI
or through a parallel port. The main developer of haptic
devices, Sensable recommends the use of the IEEE 1394
connection cards with VIA chipset because of its high
performance.

Minimum requirements assure the normal execution of a
simple virtual scene, meaning a scene that does not contain
any complex object and which does not has to process a
large amount of information. More complex scenes require
high performance hardware components. Therefore, the
second part of the hardware requirements refers to hardware
system performance. For the studied platforms, the

requirements for RAM and processor speed depend on how
complex the application is, while for the permanent memory,
the minimum requirement consists of the memory occupied
by the framework’s files.

TABLE I. TYPES OF LICENSES UNDER WHICH ARE AVAILABLE THE
STUDIED FRAMEWORKS

R
ea

ch
In

SO
FA

C
H

A
I3

D

H
3D

G
iP

Si

O
pe

n
H

ap
tic

s

Pa
id

 li
ce

ns
e

O
pe

n-
so

ur
ce

View source-code 0 0 9 9 0 0

Changing existing code 0 0 9 9 0 0

Software distribution modified/
unmodified 0 0 9 9 0 0

Class extend 0 0 9 9 0 0

Community support 0 0 1 9 0 0

Se
m

i-o
pe

n
so

ur
ce

 View source-code 0 0 0 0 0 0

Changing existing code 0 0 0 0 0 0

Software distribution modified/
unmodified 0 0 0 0 0 0

Class extend 0 0 0 0 0 0

Community support 0 0 0 0 0 0

C
lo

se
d

so
ur

ce
 View source-code 1 0 0 0 0 0

Changing existing code 1 0 0 0 0 0
Software distribution modified /
unmodified 0 0 0 0 0 0

Class extend 3 0 0 0 0 0

Fr
ee

 li
ce

ns
e

O
pe

n-
so

ur
ce

View source-code 0 9 9 9 0 0

Changing existing code 0 9 9 9 0 0

Software distribution modified /
unmodified 0 9 9 9 0 0

Class extend 0 9 9 9 0 0

Community support 0 1 1 9 0 0

Se
m

i-o
pe

n
so

ur
ce

 View source-code 0 0 0 0 9 0
Changing existing code 0 0 0 0 9 0
Software distribution modified /
unmodified 0 0 0 0 9 0

Class extend 0 0 0 0 9 0

Community support 0 0 0 0 1 0

C
lo

se
d-

so
ur

ce
 View source-code 0 0 0 0 0 3

Changing existing code 0 0 0 0 0 1
Software distribution modified /
unmodified 0 0 0 0 0 9

Class extend 0 0 0 0 0 9

2) Software resources

The second evaluation criterion of a visuo-haptic
framework is represented by the software packages required
for development.

The essential software interface for connection between
the haptic device and the operating system is represented by

the haptic device driver. It is available online following the
links to haptic device manufacturer’s websites.

a) Programming environment
To run on the Windows OS, OpenHaptics requires

Microsoft Visual Studio, version 2003 or 2005.
For the ReachIn API, the software requirements are

considered to be low. If the virtual scene is built using the
C++ programming language, a programming environment
such as Microsoft Visual Studio is required; a version
released in 2003 or 2005; if the scenes are built using the
VRML standard choosing the programming environment is
the developer’s choice.

SOFA framework supports two developing methods: at a
lower level, using C++ programming language through
Microsoft Visual Studio, or at higher level, using the
available graphical user interface, independent of any
programming language.

To use the H3D framework, the source-code and the
CMake application are required. Users can run their virtual
scenes (that are built using only implemented nodes) using
the H3D Viewer. For Windows OS, H3D developers have
provided a compact installer facilitating the installation
process.

CHAI3D application under Windows OS requires
Microsoft Visual C++, any of the versions released in: 2003,
2005, 2008 or 2010 (if there is no haptic device connected,
the Chai3D application will instantiate a virtual device which
allows navigation and interaction in the virtual environment).

Compiling GiPSi’s source code requires several libraries
such as: Intel Math Kernel Library, Posix Threads, Xerces-
C++ XML Parser and ACE\TAO.

All of the studied frameworks work under Linux OS,
using GCC/G++ compiler (Table II).

b) Graphic rendering library
The frameworks we studied employ OpenGL for

graphics rendering. This library is independent of the
operating system (Windows / Linux / MacOS).

For the OpenHaptics framework, besides OpenGL,
DirectX can be used. The main disadvantage of the DirectX
graphic library is that it is not portable. As a conclusion, all
studied frameworks use the OpenGL graphic library.
OpenHaptics and SOFA may be rendered using
Direct3D/DirectX graphic library.

In order to create visual representations of the geometric
models inside simulations, SOFA supports two methods:
either through directly accessing OpenGL [11], or through
using the OGRE rendering engine - Open Source 3D
Graphics Engine [12]. OpenGL represents the lowest level in
graphic rendering architecture, while OGRE is an object
oriented architecture which offers an intuitive graphic
interface when developing applications. This interface may
contain in its implementation the OpenGL or Direct3D
libraries provided by Microsoft. In Table II we present the
grades of the studied APIs and frameworks regarding the
libraries needed for simulators developing.

C. Multimodal ressources
This criterion is essential in the developing process using

a specific platform and refers to the compatibility of the
platform with 3D defined objects. In other words, the more
compatible the platform is with several types of 3D objects,
the more useful the platform is.

TABLE II. RESOURCES REQUIRED BY THE STUDIED FRAMEWORKS

R
ea

ch
In

SO
FA

C
H

A
I3

D

H
3D

G
iP

Si

O
pe

n
H

ap
tic

s

O
pe

ra
tin

g
sy

st
em

 Windows 9 9 9 9 9 9

Linux 0 9 9 9 9 9

Mac 0 9 9 9 0 9

M
in

im
um

 h
ar

dw
ar

e

re
qu

ire
m

en
ts

HDD memory 9 9 9 9 0 9

RAM memory 9 1 9 9 0 3

Graphic card 9 1 3 9 0 9

Processor 3 1 3 9 0 9

M
in

im
um

 so
ftw

ar
e

re
qu

ire
m

en
ts

Programming
environment
and compiler

3 9 9 9 9 9

Graphic
rendering 3 9 3 3 3 9

SDK Haptic
(Sensable) 9 9 9 9 9 9

External
libraries 0 0 0 0 9 0

ReachIn extends the structure of VRML; from this

reason, the platform may interpret this type of files. As a
consequence, it may interpret the geometry of objects
specified in VRML format, as IndexedFaceSet and
IndexedLineSet.

On the other side, SOFA is compatible with a large
number of file types that define 3D objects such as .wrl and
.obj. SOFA is compatible with popular extensions like .bmp,
.jpg, .png and .tiff.

CHAI3D supports both 2D, as .bmp and .tga, and 3D, as
.3ds and .obj, objects. The 2D imported objects are usually
used as textures for 3D objects but they may also be used to
insert different graphical elements, as labels.

In order to work with 3D objects imported from 3D
Studio Max or Blender, OpenHaptics provides a specialized
class, named TriMesh, that contains lexical analyzers for
.obj, .3ds, .stl and .ply files.

GiPSi platform uses only 3D objects in .obj file format
and 2D resources in .tga format. Moreover, the current
version of GiPSi doesn’t include support for audio resources.

At last but not least, H3D is open to use both VRML and
X3D standard files, as media for rapid developing and
visualization of 3D virtual scenes inside a Web browser.

D. Compatibility with haptic devices
Haptic devices are rated on a performance scale

according to their characteristics.
In Table III the technical details of the haptic devices

compatible with each of the studied frameworks are listed.
These technical details are:
- Haptic resolution: The minimum distance (measured in

dpi: dots per inch) between two points in the real space
noticeable by the haptic device,

- Degrees of freedom (Input - Output): The input is the
data set sent from the haptic device to the software. The
output represents the force rendering process. Degrees of
freedom represent the number of the translation and
rotation axis.

- Exerted force: the maximum output force of the haptic
device measured in Newton.

- Workspace: physical volume in which the haptic device
allows movement.
Each framework is compatible with some haptic devices;

for example, H3D framework is compatible with four haptic
devices: Sensable, ForceDimension, Falcon, and
HapticMaster.

Chai3D framework is compatible with Phantom, Delta,
Falcon and Freedom6s. Additional, a class named
CustomDevice is available and it could be used to create
interaction with another type of haptic devices. Also, some
frameworks can work simultaneously with two haptic
devices (e.g. Chai3D and ReachIn).

In the current version, the GiPSi framework is based on
the HDAPI, and it offers a programmable interface only for
Phantom devices. In our review we noted that GiPSi cannot
use simultaneously more than one haptic device.

For the OpenHaptic framework, the compatible devices
are only the ones manufactured by Sensable: Phantom and
Premium 6DOF.

E. 3D navigation metaphors and devices
There are currently two methods for user navigation

through the virtual environment navigation: pre-programmed
and free navigation. While the first one needs a pre-
computed path but needs no navigation device, the second
gives the user the freedom to choice for viewpoint position
and orientation by using an input device, usually a mouse or
keyboard. This latter navigation type requires user skills in
navigation and spatial orientation.

In free navigation, the user may adopt either "view-point-
in-hand" or "world-in-hand" metaphors, depending on the
predominant actions the user needs to execute inside the
virtual environment.

Navigation is realized using desktop interaction devices
(e.g. keyboard, mouse, joystick), specialized ones (e.g.
spaceMouse, graphic tablet) or even haptic devices, having
from 2 degrees of freedom (DOF) to 6 DOF. Depending on
the navigation metaphor, the real device translation and
rotation are transmitted to the viewer’s viewpoint or to the
objects in the scene.

Both ReachIn and H3D platforms have spaceMouse
classes. The spaceMouse movements are processed before
their transmission to the viewer or scene position, so that the

movement maybe restricted to some specific directions, or
planes.

In CHAI3D, SOFA and GiPSi, navigation is made using
the mouse, based on the Glut library, or directly using the
haptic device. In order to use a spaceMouse, an additional
API is required.

TABLE III. TECHNICAL DESCRIPTION OF EACH STUDIED HAPTIC
DEVICE

H
ap

tic

re
so

lu
tio

n

In
pu

t
D

O
F

O
ut

pu
t

D
O

F

Ex
er

te
d

fo
rc

e
(N

)

W
or

ks
pa

ce

(m
m

)
(L

xI
xA

)

Phantom Omni ~450 dpi 6 3 3.3 160x120x70
Phantom Desktop ~1100 dpi 6 3 7.9 160x120x120
Phantom Premium
6DOF >1000 dpi 6 3 22 381x267x191

Falcon >400 dpi 3 3 8.9 101x101x101
Omega3 >1000 dpi 3 3 12 160x160x110
Omega6 >1000 dpi 6 3 12 160x160x110
Omega7 >1000 dpi 6 3 12 160x160x110
Delta3 >1500 dpi 3 3 20 400x400x260
Delta6 >1500 dpi 6 6 20 400x400x260
Virtuose 6D35-45 ~ 3100 dpi 6 6 35 644x500x350
Freedom6S ~ 1500 dpi 6 6 2.5 170x220x330
HapticMaster ~ 3000 dpi 3 3 250 614x400x360
Xitact Instrument
Haptic Port ? 4 1 20 0x0x200

F. Implementation language
For the development of virtual scenes each of the studied

frameworks offers two levels of languages: on the low level
there are the programming languages and the high level is
represented by meta-languages or modeling languages. All
the studied frameworks use C++ and only ReachIn and H3D
allow Python scripts together with VRML in ReachIn or
X3D language, in H3D. The meta-language XML is
employed by SOFA, CHAI3D and GiPSi to describe the
virtual scene with a graph structure.

G. Extensibility and adaptability
The extensibility of a visuo-haptic framework consists in

its capability to be continuously augmented with new
functionalities. This may be obtained by the introduction of
new classes or algorithms implemented by the application
developer. Using dynamic typing and dynamic linking, we
may change the application behavior at run-time.

According to the ISO/IEC 9126-1 [13] standard, the
adaptability is defined as its capability to adapt at different
media without the need of supplementary actions. Applying
this concept to our project, we consider that adaptability of
the platform consist in its capability to adapt to pre-defined
contexts without being modified by the developer. To this
end, the developer needs to make use of different levels of
abstraction and parameterization.

The applications developed using ReachIn run on the
basis of a scene graph structure. This entity is implemented

in the C++ language using one or several classes. The
developer access at implicit implementations is limited at the
level of functions and class headers. During the development
process new classes may be implemented based on existing
ones, thus the platform is considered to be both adaptable
and extensible.

CHAI3D allows the development of new C++ classes
inside the API. Afterwards, these classes are available to be
used in new applications.

Similarly with the previous platforms, H3D is based on
the node concept, with associated fields, implemented as a
C++ class. By the object-oriented derivation, the platform
proves to be extensible.

GiPSi has a CORBA-based extension, named GiPSiNet
[14]. That allows applications to run distributively.

In the Table IV illustrates the scores regarding these two
quality properties: extensibility and adaptability.

TABLE IV. EXTENSIBILITY AND ADAPTABILITY

R
ea

ch
In

SO
FA

C
H

A
I3

D

H
3D

G
iP

Si

O
pe

n
H

ap
tic

s

D
ev

el
op

m
en

t
fle

xi
bi

lit
y Extensibility 3 9 9 9 9 3

Adaptability 9 3 1 3 3 3

H. Real/virtual time execution
Due to the complexity of the simulation calculus, some

simulation systems need a supplementary time for the
execution of each simulation time step, without the
possibility to run in real time. In this direction, the virtual
time [15] represents the time needed to complete execution
of each simulation step. For the execution of the same
simulation in real time, reducing the computational
complexity is required, at the expense of the simulation
fidelity.

ReachIn, CHAI3D, H3D, GiPSi and OpenHaptics
platforms have been designed for developing of multisensory
applications that are focused on real time execution, fast
enough to be perceived by human senses as an interactive
simulation.

SOFA was designed for rapid developing multisensory
medical applications. This platform is characterized by
strong flexibility regarding scene object definition: each
object is split in several functional parts. The SOFA’s scene
consistency is assured by its models mappings. The models
used for objects representations may be independently used.
This quality offers SOFA flexibility in spite of the loss of
fidelity due to the increased data processing requirement.

I. Dynamic configuration of the scene
This important criterion allows the evaluation of the

capability of a platform/API to interact with an application
structure while the application is running.

By default the platforms ReachIn, CHAI3D, H3D and
GiPSi do not offer this kind of support. The only studied
platform that is able to manage run-time changes in the scene
graph structure is SOFA. User graphic interface gives the
user the capability to interact with nodes from the scene
graph structure. For example, while the application is
running, the user may add or delete geometrical objects; the
user may modify the values of used variables inside the
scene, improving application development speed.

J. Documentation
While SOFA provides online documentation, ReachIn

offers less support. In fact, there are four documents: two of
them focus on technical support for installation,
configuration and applications running; the third is the
complete guide for the ReachIn classes and the last one is the
programmers guide.

The CHAI3D documentation is generated using Doxygen
and contains the complete class model of the platform. The
documentation is completed by CHAI3D well explained
examples.

OpenHaptics has a programmers guide available both for
academic and non-academic use together with technical
support for commercial license.

H3D API offers a very good documentation for
installation and for application specific class development
based on a manual, a wiki and a Doxygen generated
document.

Finally, GiPSi platform is described only online [16]. Its
documentation consists of several publications [8, 17] which
give a good insight in the platform architecture and the
motivation for its development.

K. Availability of the API
By the availability of a platform we understand the

existence of a community and/or forum that assures an active
development of the platform, or, in the case of a commercial
distribution, a company that distributes it.

Currently, the company that develops the ReachIn
platform stopped commercializing it a few years ago.

VI. FINAL SCORE AND DISCUSSIONS
Fig. 2 represents the frameworks/APIs evaluation

together with the final scores. As we can observe, H3D API
has the highest score, close followed by CHAI3D. The
H3D’s level score may be explained both by its popularity
and by its level of support. Basis on this classification, we
employed H3D framework in order to develop a visuo-haptic
prototype for liver diagnostics through palpation [1].

In conclusion, the present contribution helps us in
understanding and choosing the most appropriate
framework/API to HapticMed project and also gives us a
perspective about the lack of existing standardized APIs on
the market for haptic application developers. Nevertheless,
the haptic applications potential largely exceeds the potential
of other existed applications because the new direction they
impose in the area of simulation and training applications in
key domains for society evolution (e.g. medicine, robotics,
etc.).

ACKNOWLEDGMENT
Our work was supported by the ANCS grant HapticMed

- Haptic interfaces for medical applications project, contract
no 128/02.06.2010, ID/SMIS CODE 567/12271, POSCCE
O.2.1.2/2009 competition. We would like to thank Aurelian
Nicola, Mihai Polceanu, Petre Costin as well as the other
members of the CERVA team from Ovidius University of
Constanta, Romania, for their support.

REFERENCES
[1] F. G. Hamza-Lup, C. M. Bogdan, and A. Seitan, “Haptic Simulator

for Liver Diagnostics through Palpation”, in Proceedings of the
Medicine Meets Virtual Reality (MMVR 2012), Costa Mesa,
California, USA, IOS Press, 2012, pp. 156-160, doi: 10.3233/978-1-
61499-022-2-156

[2] Web3D, “X3D”, retrieved May 25, 2011, from Web3D site:
http://www.web3d.org/x3d/, 2011

[3] Reachin, “ReachIn”, retrieved May 25, 2011, from ReachIn site:
www.reachin.se, 2011

[4] SOFA, “SOFA”, retrieved May 25, 2011, from site: www.sofa-
framework.org, 2011

[5] CHAI3D, “CHAI3D”, retrieved May 25, 2011, from site:
www.chai3d.org, 2011

[6] ODE, “ODE”, retrieved May 25, 2011, from ode site:
http://www.ode.org, 2011

[7] Sensegraphics, “H3D”, retrieved May 25, 2011, from Sensegraphics
site: http://www.h3dapi.org/, 2011

[8] M. C. Goktekin, F. Tendick and S. S. Sastry, “GiPSi: A Draft Open
Source/Open Architecture Software Development Framework for
Surgical Simulation”, In Proceedings of the International Symposium
on Medical Simulation, Cambridge, MA, 2004, pp. 240-248.

[9] Sensable, “OpenHaptics”, retrieved May 25, 2011, from Sensable
site: http://www.sensable.com/products-openhaptics-toolkit.htm,
2011

[10] J. Terninko, Step-by-Step QFD Customer Driven Product Design;
Second Edition. Boca Raton, FL: St. Lucie Press, 1997

[11] OpenGL, “OpenGL”, retrieved May 25, 2011, from site:
http://www.opengl.org/, 2011

[12] OGRE, “OGRE”, retrieved May 25, 2011, from ode site:
http://www.ogre3d.org/, 2011

[13] ISO/IEC 9126-1:2001 Software engineering — Product quality —
Part 1: Quality model, 2001

[14] Object Management Group, “CORBA”, retrieved May 25, 2011, from
OMG site: http://www.corba.org/, 2011

[15] F. Mattern, “Virtual Time and Global States of Distributed Systems”,
Parallel and Distributed Systems, pp. 215-226, 1988

[16] GiPSi, “GiPSi”, retrieved April 19, 2011, from GiPSi site:
GiPSi.case.edu, 2011

[17] M. C. Cavusoglu, T. G. Goktekin, F. Tendick and S. S. Sastry,
“GiPSi: An Open Source/Open Architecture Software Development
Framework for Surgical Simulation”, Medicine Meets Virtual Reality
XII (MMVR 2004) , Newport Beach, CA: IOS Press, 2004, pp. 46-
48.

Quality Properties
(a.k.a. "Functional
Requirements" or

"Hows")

Demanded Quality
(a.k.a. "Customer
Requirements" or
"Whats")

ReachIn SOFA CHAI3D H3D GiPSi Open
Haptics

9 4.000 228 39 9 9 0 0 0 0 0 0 0 0 0 0 0 0.00 0.00 7.40 9.00 0.00 0.00

9 2.667 112 33 0 9 0 0 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0.00

9 1.333 56 33 0 9 0 0 0 0 0 0 0 0 0 0 0 1.25 0.00 0.00 0.00 0.0 0.00

9 6.667 320 39 0 9 0 0 0 0 0 0 0 0 0 0 0 0.00 7.40 7.40 9.00 0.00 0.00

9 5.333 224 39 0 3 0 0 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 7.40 0.00
9 4.000 96 21 0 3 0 0 0 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00 0.00 5.50

3 4.000 28 0 7 0 0 0 0 0 0 0 0 0 0 0 0 3.00 9.00 9.00 9.00 6.00 9.00

9 1.333 24 0 0 18 0 0 0 0 0 0 0 0 0 0 0 7.50 3.00 6.00 9.00 0.00 7.50

3 1.333 12 0 0 9 0 0 0 0 0 0 0 0 0 0 0 3.00 4.50 3.00 3.00 5.25 4.50

9 6.667 300 0 0 9 36 0 0 0 0 0 0 0 0 0 0 2.25 4.50 4.50 4.50 4.50 4.50

9 4.000 216 0 0 9 0 45 0 0 0 0 0 0 0 0 0 9.00 9.00 3.60 0.00 1.80 7.20
9 4.000 84 0 0 3 0 0 18 0 0 0 0 0 0 0 0 4.50 0.00 4.50 0.00 0.00 0.00

9 6.667 480 3 12 6 0 0 0 51 0 0 0 0 0 0 0 7.62 2.00 2.92 6.92 2.07 2.07

9 5.333 112 0 0 0 0 0 0 0 21 0 0 0 0 0 0 9.00 6.00 6.00 9.00 6.00 6.00

9 5.333 112 0 0 0 0 0 0 0 21 0 0 0 0 0 0 9.00 6.00 6.00 9.00 6.00 6.00

9 4.000 36 0 0 0 0 0 0 0 0 9 0 0 0 0 0 9.00 9.00 9.00 9.00 9.00 9.00

9 4.000 36 0 0 0 0 0 0 0 0 9 0 0 0 0 0 9.00 0.00 0.00 9.00 0.00 0.00

9 4.000 108 0 0 0 0 0 0 0 0 27 0 0 0 0 0 3.00 3.00 3.00 3.00 3.00 0.00

9 6.667 80 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0.00 9.00 0.00 0.00 0.00 0.00

9 4.000 84 0 0 0 0 0 0 0 0 0 0 21 0 0 0 9.00 3.00 3.00 9.00 1.00 9.00

9 4.000 72 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0.00 9.00 9.00 9.00 9.00 9.00

9 4.000 48 0 0 0 0 0 0 0 0 0 0 0 0 12 0 4.50 9.00 4.50 4.50 4.50 4.50

9 6.667 120 0 0 0 0 0 0 0 0 0 0 0 0 0 18 6.00 6.00 5.00 6.00 6.00 3.00

Final Score 3.917 3.937 4.050 5.166 2.771 2.865

M
ul

tim
od

al
 re

so
ur

ce
s

Li
ce

ns
e

Haptic devices

3D
 n

av
ig

at
io

n

Eye-in-hand navigation

World-in-hand navigation

Semi-open source license paid

Closed source license paid

Open source free licence

Semi-open source free license
Closed source free license

Operation system

La
ng

ua
ge

s Programming languages

Scripting languages

Modeling languages

Interaction with scene graph

Documentation

Availability

Simulation

Development flexibility

3D virtual objects

2D virtual objects
Audio objects

M
ax

 R
el

at
io

ns
hi

p
Va

lu
e

Minimal hardware requirements

Minimal software requirements

Open source licence paid

M
in

im
al

 re
qu

ire
m

en
ts

Li
ce

ns
e

O
pe

ra
tin

g
sy

st
em

M
in

im
al

 re
qu

ire
m

en
ts

3D
 V

irt
ua

l o
bj

ec
ts

R
el

at
iv

e
W

ei
gh

t

A
bs

ol
ut

e
im

po
rt

an
ce

D
oc

um
en

ta
tio

n

A
va

ila
bi

lit
y

Analysis
(0=non-existent, 1=weak, 3=average, 9=good)

2D
 V

irt
ua

l o
bj

ec
ts

A
ud

io

H
ap

tic
 d

ev
ic

es

N
av

ig
at

io
n

de
vi

ce
s

La
ng

ua
ge

s

D
yn

am
ic

 c
on

fig
ur

at
io

n
of

 th
e

sc
en

e

R
ea

l/v
irt

ua
l t

im
e

ex
ec

ut
io

n

A
da

pt
ab

ili
ty

 a
nd

 e
xt

en
si

bi
lit

y

Figure 2. House of quality of existing visuo-haptic APIs and frameworks

