A Different View: Virtual Interactive Engineering on the Web

Students: Ivan Sopin, Carlos Sanchez, Patrick Hager
Advisors: Felix Hamza-Lup, Priya Goeser, Wayne Johnson

Computer Science & Engineering Studies
Outline

• Why Materials Engineering?
• Web3D Engineering Labs
 – Tensile Testing Experiment
 – Simulator Implementation
 – Graphical User Interface
 – Simulation Functionality
 – Machine and Material Sample Modeling
 – Format Conversion Issues
• Expected Impact on Education
• Conclusions and Future Work
• Team
• Acknowledgements
Why Materials Engineering?

- Engineering courses often seem as abstract concepts difficult to understand and apply.
- Laboratory experience is an essential part of engineering education.
- Possible issues:
 - no space for large equipment in labs
 - lab setups are too costly
 - students have no time to finish the experiments during labs
- Virtual Interactive Engineering on the Web (VIEW) is Web3D-based laboratories accessible from any computer with Internet connection.
- Tensile Testing Laboratory (TTL) is a part of Engineering Materials course which introduces students to the analysis of mechanical properties of materials.
Related Work

Non-Web3D:

• The department of Mechanical Engineering at the University of Colorado, Boulder – Integrated Teaching and Learning Online Lab [1], including the tensile test, the torsion test, beam deflection, heat treatments experiments, etc.
 – Drawback: 2D Flash movies, reduced interactivity.

• The faculty at Rutgers University and the University of Illinois at Urbana-Champaign – Instructional Remote Laboratory Environment [2], including combustion and jet thrust labs

• M. Karweit at John Hopkins University – virtual laboratory for experiments showing the diffusion process, a robotic arm control [3]

• Bhargava et. al – a virtual torsion laboratory [4]
 – Drawback: reduced interactivity, no 3D perspective

• Demidov et. al. – crystal models for an engineering materials course [5]

• Rehan et. al. – teaching the Solid State course at Mansoura University, Egypt [6]

• Liarokapis et al. – broad engineering education [7]
 – A few ideas, no implementation
Technologies for Web Simulation

Technologies for Web3D:

• VRML
• Java 3D
• WireFusion
• Adobe Shockwave
• X3D – new, XML based
X3D vs. VRML

- Compatible with the next generation of graphics files - e.g. Scalable Vector Graphics.

- Open source, so no licensing issues.

- Has been officially incorporated within the MPEG-4 multimedia standard.

- XML support makes it easy to expose 3D data to Web Services and distributed applications.

- 3D objects can be manipulated in C or C++, as well as Java
Tensile Testing Experiment

Figure 1: InstronTM 5566 real TTM (left) and simulator (right)
Tensile Testing Experiment

• Objective – introduce basic testing techniques required to evaluate mechanical properties of materials (hardness, ductility, and stiffness)

• Setup involves a Tensile Testing Machine (TTM); our Virtual TTL (VTTL) models an InstronTM 5566 TTM (figure 1).

• Sample of a certain material is mounted into the holding grips of the TTM, and the upper grip pulls the sample upward (figure 2).

Figure 2: Sample fixation in the grips of TTM
Tensile Testing Experiment

• TTM controller measures load and strain and transmits the information to the computer.

• A load-strain linear graph with the results is obtained.

• These data can be used for further analyses with MATLAB™ and other software.
Simulator Implementation

• Three key components:
 – PHP
 – X3D
 – JavaScript

• PHP is the web scripting language of choice for generating web pages.

• X3D [8] is an ISO standard - real-time graphics processing.

• JavaScript provides the interaction between the elements of the graphical user interface (GUI).

• Additional components:
 – ECMAScript
 – AJAX (Asynchronous JAvascript and Xml)
Graphical User Interface

Figure 3: VTTL’s GUI
Multimodal
Graphical User Interface (3D & sound)

- GUI components (figure 3):
 - HTML controls
 - virtual 3D scene
 - graph/displays panel

- HTML controls:
 - clickable images to choose a material sample
 - “Start Experiment” button for starting the experiment
 - “Examine Specimen” button for examining the current sample in a close view
 - “Download Data” button for downloading experimental data in an MS Excel™ file

- Experiment is initiated using button once a sample is selected.

- During the experiment the TTM motion is simulated, and the graph of load-strain dependence is drawn.

- Audio imitating the hum of the real machine and the breaking sound of the sample
Simulation Functionality

- A special plug-in is needed to show X3D graphics (we chose BitManagement Contact™ Player).

- Scene Authoring Interface (SAI) enables the developer to dynamically modify or create X3D worlds.

- The experimental data is preloaded unnoticeably using AJAX – not affected by the fluctuations of the network delay.

- JavaScript function reads pairs of strain-load values and updates the scene and the graph.
Figure 4: *Polyethylene sample breakage*
Simulation Functionality

• The virtual material sample has three parts:
 – two ends that are held by the grips
 – the middle part that brakes

• Upper grip moves upward based on the strain values from the data set.

• Upper grip’s shift equals $gauge \times strain (%) / 100$:
 – Upper end of the sample is translated along with the upper bar.
 – Middle part is lifted half that distance and elongated to appear as a single piece with the other parts.
 – Lower end remains static.

• To “brake” the sample, we replace it with a preloaded “broken” elongated version.
Simulation Functionality

- Graph is calibrated based on the experimental values (figure 4):
 - Plotting area adjusts automatically to fit the functional curve.
 - Grating period is such that a reasonable number of graduation marks is displayed.

Figure 5: VTTL experimental graphs for Aluminum 2024 (left) and Steel 1006 (right)
Machine and Material Sample Modeling

- We use SolidWorks™ to model the TTM and material samples.
- Each part was measured with a digital caliper.
- All elements were assembled into a single part; colors and surface textures were added.
- Five samples of different material types were modeled: Aluminum 2024, Aluminum 6061, Steel 1006, Polycarbonate, and Polyethylene.
Machine and Material Sample Modeling

Figure 6: “Broken” samples of different material types
Format Conversion Issues

- SolidWorks™ only exports to VRML, not X3D.
- Contact™ player can easily convert the scene from VRML to X3D via saving dialog.
- Graphical objects are downloaded from the website: file sizes grow -> download and visualization time grows.
- Scene can be cached by the X3D client.
- Objects with fewer polygons are desired.
- For instance, a cube could be constructed with 12 triangles instead of hundreds or even thousands.
Expected Impact

• The virtual lab will be assessed in the fall semester in the Introduction to Engineering Materials course (ENGR 2000) at AASU.

• The tool already stimulates the students’ interest in the course. (we showed the demo to a few eng. students)

• VTTL will provide the students with an opportunity to transfer and apply knowledge from other courses (e.g., Computing for Engineers using MATLAB™) to complete the virtual lab assignment.
Assessment

• Initial assessment of this tool will be achieved using student surveys and pre/post laboratory quizzes.

• Further modifications will be based on students’ and instructors’ feedback.

• Other courses in the engineering curriculum such as Engineering Graphics and Introduction to Thermodynamics may benefit from this project.
Conclusions and Future Work

• We have presented the initial stage of a virtual laboratory for engineering materials that uses the X3D standard.

• Models were developed in CAD software and employed in the implementation of a VTTL accessible on the Web.

• This lab will be used by engineering students in the fall 2008 semester.

• We will report the details of our assessment of and modifications to the tool in fall 2008.
Conclusions and Future Work

Figure 7: Project’s website
Team

Teaching and Learning Grant 2007-2008 awarded by AASU's Faculty Development Committee

Figure 8: Patrick Hager, Carlos Sanchez, Dr. Wayne Johnson, Dr. Felix Hamza-Lup, Ivan Sopin, and Dr. Priya Goeser
Acknowledgments

• Teaching and Learning Grant 2007-2008 awarded by AASU's Faculty Development Committee

• We thank Dr. David Scott, Associate Professor, Civil and Environmental Engineering, Georgia Institute of Technology, Savannah Campus, for providing us with access to the equipment and required data.
References

References

Thank you!
Any questions?